PAM2001 Radiation Protection

In This Lecture...

Regulations

- IRR
- Dose-equivalent Limits

Implementation

- Radiation Protection Advisers & Supervisors
- Local Rules
- Personnel Monitoring

Radiation Protection

"Maintain a working environment where levels of ionizing radiation pose minimal acceptable risk"

Revision: Stochastic Effects

- Probability of effect occurring is governed by laws of chance
- Therefore, greater the dose the greater the probability of effect occurring
 - No safe dose limit <u>ALL</u> doses carries some risk
 - Severity of effect is not related to dose
- Cancers & Genetic effects

Revision: Deterministic Effects

- Severity increases with dose
- Usually threshold below which no effect occurs
- Erythema, epilation,

Regulations

Radiation Protection

Based on three general principles...

- Every practice resulting in an exposure to ionizing radiation should be justified by the advantages it produces
- 2. All exposures should be kept as low as reasonably achievable (ALARA)
- 3. The sum of the doses should not exceed specified limits

Ionizing Radiation Regulations

- Since joining EEC British radiation protection policy has become centralised from Brussels
- New document IRR 1999
- Contains fundamental requirements needed to control exposure of radiation workers, patients & public

Dose-Equivalent Limits

- Since IRR 1999 *Dose-equivalent limits* replace *maximum permissible dose*
- Limits set on Risk-Benefit basis
- Limits are NOT a boundary between safety & danger
- Reflect levels of risk comparable to other activities with acceptable risk

Example

The Risk factor for radiation-induced leukaemia is estimated to be $2X10^{-3}$ Sv⁻¹ If each member of a population of 1 million

receives a 1 Sv dose how many leukaemias will occur?

Answer: 2000

1 Sv ~50,000 chest X-rays

Dose-Equivalent Limits

- Socially acceptable risk of various occupations 10⁻⁵ to 10⁻⁶ per year
- Assume the average risk ~10⁻⁵ per year
- Total risk factor for all stochastic effects if 10⁻² Sv⁻¹
- Apply to risk factor equation
 - Calculate Annual Dose-Equivalent Limit
 - -Annual Dose-equivalent Limit ~ 1 mSv

How the Regulations are Implemented

Radiation Protection Advisers & Supervisors

- RPA suitably qualified & experienced
- Advises employers as to observance of IRR 1999 and all other aspects of safe use of ionizing radiation
- RPA must be consulted on points listed in section 33.11.1 Cloke
- RPAs also involved in selection of RPS

Local Rules

- Employers have legal responsibility to provide written local rules in every department where employees work with ionizing radiation
- Rules must be brought to the attention of employees
- RPAs write rules, RPSs ensure they are followed

Local Rules

- Should Contain:
 - Names of RPAs and RPSs
 - Details of restricted areas
 - Procedures and protocols for department
 - Contingency plans

Personnel Monitoring

- Measures dose received by radiation workers
- Scrutinise policies formulated by RPA
- Allows RPA & RPSs to identify and council individuals receiving higher doses
- Three Main Methods
- 1. Film Badge
- 2. TLD
- 3. Pocket Dosemeters

Film Badge Method

- Based on optical density increases with amount of radiation received by film
 - Controlled calibration, processing & analysis leads to dose estimation of dose received
- Filters (Plastic, Tin and Aluminium) used to distinguish between β-particles, lowand high-energy X-rays or γ-rays

Film Badge Method

- Advantages
 - Permanent record of received dose
 - Easy to handle
 - Low tech processing
- Disadvantages
 - Delay between reading and exposure
 - Film is expensive and not reusable
 - Poor sensitivity some of new dose limits do not show on film

Pocket Dosemeters Real-time dose monitoring Digital display of dose rate Set audible alarm for preset dose rates Download data onto PC

5

Pocket Dosemeters

- Advantages
 - Very sensitive
 - Monitors dose rate
- Disadvantages
 - Expensive

Choice of Monitor

- RPA decides on most appropriate method
- Assess risk of receiving unexpected high dose